设计应用

基于CUK电路无电解电容的AC-DC LED驱动电源设计

戴文桐,牟宪民,范永升

(大连理工大学 电气工程学院,辽宁 大连116024)


    摘  要: 为提高LED驱动电路的使用寿命并优化其整体性能,提出了一种新型的基于CUK电路的非隔离型AC-DC电路拓扑。该拓扑通过在基本的CUK电路上增加一个MOSFET来实现。可实现高功率因数并消除电解电容。对于该结构进行了详细分析,并且使用LTspiceIV软件对其进行了开环和闭环的仿真,最后通过带载实验来证实分析的正确性。

    关键词: LED驱动电源;CUK电路;AC-DC

    中图分类号: TN86

    文献标识码: A

    DOI:10.16157/j.issn.0258-7998.170462


    中文引用格式: 戴文桐,牟宪民,范永升. 基于CUK电路无电解电容的AC-DC LED驱动电源设计[J].电子技术应用,2017,43(10):153-156.

    英文引用格式: Dai Wentong,Mu Xianmin,Fan Yongsheng. A non-isolation electrolytic capacitor-less AC-DC LED driver based on CUK converter[J].Application of Electronic Technique,2017,43(10):153-156.

0 引言

    当今人类面临着严重的能源问题,而照明引起的能源损耗更是大的惊人。在此背景下,有着节能环保等诸多优点的LED在近些年发展迅速[1]。LED的使用需要性能优良的驱动电源作为支撑,常用的LED驱动电源需要大的电解电容来降低输出电流纹波,而电解电容是LED驱动电源中寿命最低的一个环节,其使用会大大降低整体的寿命,同时,也会引起功率因数的降低。

    针对此问题,不同学者提出了不同的方法来消除电解电容,但主要是基于两个思想,其一,通过优化电路拓扑的控制策略以避免电解电容的使用;其二,通过改善电路的拓扑结构来消除电解电容。基于第一种思想,文献[2-3]提出了通过向输入端注入谐波电流以达到对电路参数进行优化,从而达到消除电解电容的目的;文献[4]提出了利用PWM调光技术来改善输出电流,可避免使用电解电容;文献[5]提出了通过使用恒流调节器控制负载的功率,达到调节输出电流稳定的目的。基于第二种思想,文献[6-7]不但实现了消除电解电容的目的,同时很大程度提升了拓扑整体效率。

    本文提出一种非隔离式基于CUK电路的AC-DC LED驱动电源拓扑。具有以下优点:(1)具有很高的功率因数;(2)很长的使用寿命(未使用电解电容);(3)输入输出能量平衡;(4)较小的输出电流纹波。

1 电路结构分析

    所提出的LED驱动电源拓扑如图1所示。基于分析做出以下假设:

dy4-t1.gif

    (1)输入电压Vg=Vmsin(ω1t)为一个理想的正弦波,Vm为输入电压幅值,ω1=2πf,f为输入电压频率;

    (2)假设电路稳态运行时所有元件都工作在理想状态下;

    (3)MOSFET的开关频率远大于输入电压频率,故在每个开关周期内可以视输入电压为恒定值;

    (4)电感L工作在电流断续状态;

    (5)电感L0,电容C0,电阻RL可视为恒流源。

    单个开关周期内电路可分为四种工作状态,工作波形如图2所示。以下将对每个工作阶段做具体分析。

dy4-t2.gif

    0-t1阶段:S1接通S2断开,电感L处于充电过程,工作电路如图3所示。

dy4-t3.gif

    t1-t2阶段:S1和S2同时接通,电感L继续充电至峰值,电容C开始对负载放电,工作电路如图4所示。

dy4-t4.gif

    t2-t3阶段,S1断开S2接通,二极管D接通,Vg与L同时给电容C充电,工作电路如图5所示。

dy4-t5.gif

    t3-t4阶段,S1和S2同时断开,二极管D接通续流,工作电路如图6所示。

dy4-t6.gif

    根据工作波形以及四种工作状态的分析可以得出输出电压为:

dy4-gs1-3.gif

    图7显示了输入功率,电容C储存能量以及输出功率等波形。输入电压以及输入电流均为正弦波形,输入功率频率为二倍输入电压频率。为了使输出功率恒定,电容C上储能波形频率应与输入功率相同,并且其幅值变化需要与输入功率相对应,这样可以使电容吸收大部分无功,使输出功率保持恒定状态,输出电流为稳定直流,负载LED便可正常工作。

dy4-t7.gif

2 电路拓扑仿真

    使用LTspiceIV仿真软件对该电路进行仿真,仿真实验电路如图8所示。首先进行开环仿真,以10 Ω电阻为负载,选择不同的开关频率及占空比,单个周期内控制S1在0时刻导通,S2延后于S1导通,得到不同情况几组波形如图9所示。图中,1为输入电流,2为输出电流,3为电容C电压,4为输入电压。

dy4-t8.gif

dy4-t9.gif    

    其次进行闭环仿真,以LED为负载,对输出电流值进行采样,与设定值进行比较,根据输出电流变化控制开关管S2的开通(单个开关周期内延后于S1导通)。不同开关频率及占空比下几组仿真波形如图10所示。图中,1为输入电流,2为输出电流,3为电容C电压,4为输入电压。

dy4-t10.gif

    通过几组仿真波形可以看出,储能电容C两端电压为二倍输入电压频率,可得出其储能值曲线变化趋势与输入功率相同。虽然输出电流仍然存在一定程度的纹波,但是整体与期望的结果大致相同,说明了理论分析的正确性。闭环情况相较于开环情况输出电流纹波更小(电流轴量程开环情况为闭环情况的10倍),并且更容易控制输出电流值,对于电容充放电的控制更加方便。

3 实验验证

    基于仿真实验的结果,搭建实验平台对该电路拓扑进行实验验证。采用闭环控制,分别以7.5 W(输入电压70 V)和10.5 W(输入电压11 V)进行实验,实验中,控制电路采用电流传感器LA28-NP采样流经L2的电流,转换成电压信号之后通过比较器LM393与设定值进行对比,输出PWM波控制MOS管S2的开断,保证输出电流恒定。实验中使用的各个元件参数如下:MOSFET:47N60C3;二极管:HER504;电感L1:1 mH;电感L2:3 mH;电容C:1 μF;电容C3:0.33 μF;负载:1.5 W LED灯珠若干。

    不同开关频率及占空比下实验波形如图11所示,其中,1为输入电流,2为输出电流,3为电容C电压,4为输入电压。

dy4-t11.gif

    实验分别在70 V以及110 V下进行,以单个功率为1.5 W的LED模组作为负载,总功率分别为7.5 W和 10.5 W,输出电流稳定,LED正常发光。根据以上实验波形可以看出,电流存在一定纹波,但是纹波很小,在允许范围之内,不影响LED正常发光,不会造成频闪等问题。输出电流易于控制,对于电容充放电的控制非常方便,电容功率变化与输入功率相同,可吸收大部分无功,实现恒定功率输出,保证LED正常工作。同时,输入电压与输入电流基本保证同相位,功率因数非常高。

4 结论

    本文介绍了一种非隔离AC-DC LED驱动电源,其主要特点是:功率因数高、寿命长并且输出电流纹波比较小。前文对电路的具体工作规律进行了分析,并且对电路进行了仿真实验以及实物实验,实验结果与理论分析相匹配,验证了该设计的正确性。未来工作将进一步优化电路结构,以完成更高电压等级闭环实验,达到更精确的要求。

参考文献

[1] HUI S Y R,LI S N,TAO X H,et al.A novel passive offline LED driver with long lifetime[J].IEEE Transactions on Power Electronics,2010,25(10):2665-2672.

[2] 顾琳琳,阮新波,姚凯,等.采用谐波电流注入法减小储能电容容值[J].电工技术学报,2010(5):142-148.

[3] 顾琳琳,杨飞.采用谐波电流注入法以减小储能电容容值[C].2008年中国电工技术学会电力电子学会第十一届学术年会,2009.

[4] 杨洋,阮新波,叶志红.无电解电容AC/DCLED驱动电源中减小输出电流脉动的前馈控制策略[J].中国电机工程学报,2013,33(21),18-25.

[5] 闫胜利,孙敬贤.动态光调节下的数字式LED驱动电源设计[J].电气应用,2015(6):91-95.

[6] MA H,LAI J S,FENG Q,et al.A novel valley-fill SEPIC-derived power supply without electrolytic capacitor for LED lighting application[J].IEEE Transactions on Power Electronics,2012,27(6):3057-3071.

[7] MA H,ZHENG C,YU W,et al.Bridgeless electrolytic capacitor-less valley fill AC/DC converter for twin-bus type LED lighting applications[C]//Future Energy Electronics Conference,2013:304-310.

LED驱动电源 Cuk电路 AC-DC