设计应用

基于三次样条函数的加Rife-vincent自卷积窗 插值FFT算法的电力系统谐波检测

张莹莹 2018/11/7 11:20:00

0 引言

    电力系统中非线性负荷的大量增加,特别是电力电子装置的广泛应用,使电网中产生大量的谐波与间谐波,从而严重影响了电能质量,对电力系统的安全与经济运行造成极大的影响[1]。因此,准确测量电网中的谐波信号,实时掌握电网中的谐波参量,对防止谐波危害,维护电网的安全运行是十分必要的[2]

    目前电力系统谐波分析的主要方法有模拟滤波器法[3]、小波变换法[4]、神经网络法和快速傅里叶算法(FFT)[5]。相较于前几种方法,快速傅里叶算法(FFT)易于在ARM、DSP等嵌入式系统中实现,计算速度快、效率高、技术成熟[5],因此FFT谐波检测法应用最多。

    在同步采样下,对谐波信号运用FFT算法检测,能准确得到谐波信号参数。而对电网中的动态信号即使采用频率跟踪技术,也很难做到严格地同步采样。在非同步采样下运用FFT对信号进行参数检测时,非同步采样与数据截断所引起的频谱泄漏栅栏效应造成的误差较大。针对谐波检测中FFT检测法的栅栏效应和频谱泄漏问题,加窗插值是消除栅栏和抑制频谱泄漏的有效方法。经典窗有Hanning窗[6]、Blckman-Harris窗[7]等余弦窗。Hanning窗的特点是插值公式较简单,而且计算量小,但是分析精度较低;Blckman-Harris窗插值FFT算法的特点是分析精度较高,但是插值公式过于复杂,且计算量大,因而使用不便。本文在分析 Rife-Vincent 窗频谱特性的基础上,提出了基于三次样条函数的加Rife-vincent自卷积窗插值FFT算法。卷积窗在幅值和频率检测方面有较高的谐波检测精度。通过Rife-vincent自卷积窗对采样信号进行加权截断,可有效抑制频谱泄漏,减少谐波间的相互干扰,进一步提高信号参数检测的准确度,并且通过三次样条函数,有效地消除了栅栏效应。通过MATLAB软件,对含谐波的信号进行检验仿真,验证了本文所提的算法能够对谐波信号进行精确分析。

1 基于三次样条函数的加Rife-vincent自卷积窗插值FFT算法

    Rife-Vincent自卷积窗具有优良的旁瓣性能,采用Rife-Vincent自卷积窗能够有效抑制频谱泄漏,减少谐波间的相互干扰,通过使用三次样条函数对Rife-Vincent自卷积窗加权截断后的信号进行分析,能够准确得到各谐波信号的参数。

    以频率为fh、幅值为Ah、初相位为φh、最高谐波次数为h的谐波信号x(t)为例:

dy4-gs1-4.gif

dy4-gs5-8.gif

    此嵌套形式的三次样条插值算法的形成过程如下:

    (1)δ在区间[0,1]等步长取11个插值点(αi,δi),(αi+1,δi+1)…;

    (2)取三次样条插值函数的边界条件为自然边界条件;

    (3)调用MATLAB中的spline函数分段拟合出10段三次样条插值函数(分段越多拟合精度越高);

    (4)通过以上3步求得三次样条函数;

    (5)离线求出式(8)所示嵌套形式的三次样条插值函数。

dy4-gs9-11.gif

2 仿真分析

    为验证本文所提算法的有效性与准确性,选用弱谐波信号进行仿真,仿真模型如下:

    dy4-gs12.gif

    其中基波信号频率f0=50 Hz,采样频率fs=1 500 Hz,窗函数长度N=2 048,各次谐波信号的幅值与相位如表1所示,其中相位为本文给出的初值。仿真结果如表2、表3所示。

dy4-b1.gif

dy4-b2.gif

dy4-b3.gif

    从表2、3中可以看出:

    (1)与直接FFT运算相比,加窗插值FFT算法大大提高了谐波检测精度;

    (2)随着窗函数的旁瓣衰减速度的加快、旁瓣峰值的降低,抑制频泄露能力得到提高,信号检测精度提高;

    (3)较经典窗相比,卷积窗在幅值和频率检测方面进一步提高了谐波检测精度;

    (4)由于p阶Rife-Vincent自卷积窗优越的旁瓣性能,二阶Rife-Vincent自卷积窗的谐波检测精度较二阶Nutall自卷积窗检测精度有所提高,以五次谐波和八次谐波为例,二阶Rife-Vincent自卷积窗的谐波检测精度较二阶Nutall自卷积窗在幅值方面相对误差最大可降低0.1%,相位检测相对误差最大可降低0.1%;

    (5)随着Rife-Vincent自卷积窗卷积阶数p的增加,检测精度也有所提高,相对误差大约降低了0.1%,特别是四阶Rife-Vincent自卷积窗在三次、六次和九次谐波,检测结果非常接近真实值。

3 结论

    采用FFT算法对电力系统谐波分析时,由于频谱泄漏的影响,使得谐波参数的检测有较大的误差。为减小频谱泄漏的影响,本文选用旁瓣性能优越、时域结构简单的四项一阶Rife-vincent窗作为母窗,构造p阶Rife-Vincent自卷积窗。与经典窗、经典自卷积窗相比,本文所选用的p阶Rife-Vincent自卷积窗旁瓣峰值低、旁瓣衰减速度快,能够有效抑制频谱泄漏,减少谐波间的相互干扰,提高谐波检测精度。采用三次样条函数逼近幅值比公式,避免解高次方程,简化了计算,有效地消除了栅栏效应。通过仿真结果可以看出,本文所提的基于三次样条函数的加p阶Rife-Vincent自卷积窗插值FFT算法,在弱谐波信号检测中,能够有效提高检测精度,准确检测谐波参数。

参考文献

[1] 刘冬梅,郑鹏,何怡刚,等.几种谐波检测加窗插值FFT算法的比较[J].电测与仪表,2013,50(12):51-55.

[2] 牛胜锁,梁志瑞,张建华,等.基于四项余弦窗三谱线插值FFT的谐波检测方法[J].仪器仪表学报,2012,33(9):2002-2008.

[3] 牛胜锁,梁志瑞,张建华,等.基于三谱线插值FFT的电力系统谐波分析[J].中国电机工程学报,2012,32(16):130-136.

[4] 张鹏,李红斌.一种基于离散小波变换的谐波分析方法[J].电工技术学报,2012,27(3):252-258.

[5] 温和,滕召胜,郭斯羽,等.Hanning自卷积窗函数及其谐波分析应用[J].中国科学E辑:技术科学,2009,39(6):1190-1198.

[6] 高索丹,巴鹏.Hanning窗在电力系统谐波分析中的应用[J].自动化技术与仪表,2008,27(11):124-127.

[7] 赵文春,马伟明,胡安.电机测试中谐波分析的高精度fft算法[J].中国电机工程学报,2001,21(12):83-87.

[8] KINCAID D,CHENEY W.数值分析[M].王国荣,俞耀明,徐兆亮,译.北京:机械工业出版社,2005.

[9] 孙同明,许珉,杨育霞.应用三次样条函数快速计算插值FFT算法[J].电力自动化设备,2007,27(6):60-62.



作者信息:

张莹莹

(河南省信阳市质量技术监督检验测试中心,河南 信阳464000)

谐波分析 Rife-vincent自卷积窗 三次样条函数 频谱泄漏 栅栏效应